Preservation of Metal-Carbon Bonds During Direct Fluorination; a Practical Synthetic Method. The Synthesis of Tetrakis(trifluoromethyl)germanium

By E. K. LIU and R. J. LAGOW*

(Department of Chemistry, University of Texas at Austin, Austin Texas 78712)

Summary The metal-carbon bonds in tetramethylgermanium have been preserved during direct fluorination; tetrakis(trifluoromethyl)germanium has been produced from the controlled reaction of elemental fluorine with tetramethylgermanium. fluorination.¹ This synthetic method as applied to metal alkyls was regarded even in our laboratory as only a chemical curiosity. Recent results have shown that in some cases direct fluorination may be not only a practical synthetic method but one of choice for the preparation of perfluoro-alkyl organometallic compounds.

By controlling the fluorine concentration and temperature, we were able to obtain tetrakis(trifluoromethyl)germanium in 63.5% yield from the reaction of tetramethylgermanium

RECENTLY we have reported the first cases of preservation of mercury- carbon and silicon-carbon bonds during direct

TABLE &

	¹ H ^b					19Fc						
	CH ₂ F	Јнг	CHF ₂	JHF	CF3	$J_{\rm FF}^{\rm d}$	CF₂H	Јнг	JFF	CFH ₂	$J_{\tt HF}$	JFF
Ge(CF ₃) ₄	—				-27.0							
$Ge(CF_3)^4(CF_2H)$			6.10	45.0	-27.2	3 ⋅0	49 ·0	45.5	3.1			
$\operatorname{Ge}(\operatorname{CF}_3)_2(\operatorname{CF}_2^2\mathrm{H})_2$		—	6.23	45.5	-27.6	$3 \cdot 2$	49.4	46.0	3.1			
$\operatorname{Ge}(\operatorname{CF}_{3})_{2}(\operatorname{CF}_{2}H)(\operatorname{CFH}_{2})$	4.98	46.5	6.24	45.7	-26.3	3.3	50.6	45.5	3 ∙0	$193 \cdot 2$	46.5	3.3
Ge(CF ₃)(CF ₂ H)	6.25		6.25	45.5	-27.9	$3 \cdot 2$	49.7	46.0	$3 \cdot 1$			
Ge(CF ₃)(CF ₂ H), (CFH ₂)	4.89	46.0	6.15	45.5	-26.75	$3 \cdot 2$	50.5	45.6	3.0	193.0	46.0	$2 \cdot 9$
$Ge(CF_3)(CF_2H)(CFH_2)_2$	4.90	46.0	6.25	45.6	-25.22	$3 \cdot 2$	51.8	45.5	3.0	192.0	46.0	2.7
$\operatorname{Ge}(\operatorname{CF}_{2}^{\circ}\operatorname{H})_{2}(\operatorname{CFH}_{2})_{2}$	4.97	46 ·0	6.26	45.2			51.4	46 ·0	$2 \cdot 5$	192.5	46·6	$2 \cdot 5$

^a All spectra were recorded for neat liquids. Shifts are in p.p.m., coupling constants in Hz. ^b + ve shifts downfield from external Me₄Si. ^c + ve shifts upfield from CF₃CO₂H. ^d The appropriate fluorine-fluorine coupling pattern was present with *n* fluorine giving an n + 1 coupled pattern.

and fluorine [reaction (1)]. The experimental apparatus

$$\begin{array}{c} \operatorname{Ge}(\operatorname{CH}_3)_4 + \operatorname{F}_2 \text{-}\operatorname{He} \to \operatorname{Ge}(\operatorname{CF}_3)_4 + \operatorname{HF} \\ 0.87 \text{ g} & 1.45 \text{ g} \ (63.5 \ \%) \end{array}$$

used has been discussed previously.2 The physical and spectral properties of $Ge(CF_3)_4$ are identical with those of the same compound first prepared in 1975 in our laboratory using plasma techniques.³ The best fluorination conditions are as follows: fluorine flow rate 1 cm³ min⁻¹; helium flow rate 60 cm³ min⁻¹; starting temperature -100 °C maintained for 48 h; the temperature was then increased in 10 °C steps and maintained at the following temperatures for the following times: -90 °C, 12 h; -80, 14; -70, 8; -60, 14; -50, 10; -40, 12; -30, 10; -20, 14. The reaction is remarkably temperature dependent owing to the extremely low reactivity of the partially fluorinated tetramethylgermanium compounds. If the reaction is conducted with a fluorine flow of $1 \text{ cm}^3 \text{ min}^{-1}$ and a helium flow of $60 \text{ cm}^3 \text{ min}^{-1}$ at $-100 \text{ }^\circ \text{C}$ for 150 h, the yield of $\text{Ge}(\text{CF}_3)_4$ is only $1\cdot1\%$. However, with a fluorine flow of $1 \text{ cm}^3 \text{ min}^{-1}$ and a helium flow of 60 cm³ min⁻¹ at -100 °C for 2 days and a temperature increase of 10 °C per day to -60 °C, the yield of $Ge(CF_3)_4$ increases to 6%.

When the yield of $Ge(CF_{3})_{4}$ is low, one obtains a number of partially fluorinated tetramethylgermanium compounds. Most of the compounds contain CF₃ groups, but all contain the four germanium-carbon bonds intact. Several of the compounds along with their n.m.r. data are listed in the Table. Mass spectra and n.m.r. data including protonfluorine coupling and long-range fluorine-fluorine coupling, along with the appropriate integration are sufficient for identification of the compounds. For example, the compound $Ge(CF_3)_2(CF_2H)_2$ gives the following n.m.r. data: ¹H: CF₂H, triplet, J_{HF} 45.5 Hz; ¹⁹F: CF₃, quintet, J_{FF} 3.2 Hz resulting from coupling of two CF₂H groups; CF₂H, doublet, $J_{\rm HF}$ 46.0 Hz, with each component of the doublet being a septet, $J_{\rm FF}$ 3.1 Hz resulting from fluorine coupling of two CF_3 groups. The compounds were separated on 10% SE-30 on a Chromsorb P column.

We are grateful for support from the Office of Naval Research for this work.

(Received, 10th February 1977; Com. 119.)

- ¹ E. Liu and R. J. Lagow, J. Amer. Chem. Soc., 1976, 98, 8270.
- ² N. J. Maraschin, B. D. Catsikis, L. H. Davis, G. Jarvinen, and R. J. Lagow, J. Amer. Chem. Soc., 1975, 97, 513.
 ³ R. J. Lagow, L. Gerchman, R. Jacob, and J. Morrison, J. Amer. Chem. Soc., 1975, 97, 518.